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Abstract. We extend the spectral theory used for the calculation of the effective linear response
functions of composites to the case of a polycrystalline material with uniaxially anisotropic
microscopic symmetry. As an application, we combine these results with a non-linear decoupling
approximation as modified by Ma and co-workers, to calculate the third-order non-linear optical
susceptibility of a uniaxial polycrystal, assuming that the effective dielectric function of the
polycrystal can be calculated within the effective-medium approximation.

1. Introduction

About twenty years ago, Bergman [1] developed the spectral approach for calculating the
dielectric constant and other linear response functions of a two-component composite. His
approach was to study the analytical properties of the effective dielectric constant, viewed as
a function of the ratio of the dielectric constants of the constituents. Among other results, he
showed that all poles of this function can be expressed as eigenvalues of a certain linear
boundary-value problem, while the residues of those poles are given as certain integrals
over the corresponding eigenfunctions. Bergman’s theory actually describes a wide class of
mathematically similar physical problems in which a divergence-free field appears as a linear
response to the gradient of a potential; thus, it can be used to find the effective electrical and
thermal conductivities, magnetic permeability and many other effective parameters described
by mathematically equivalent equations.

In some microgeometries, this eigenproblem can be solved by expanding the exact eigen-
functions of the composite in terms of the individual grain eigenfunctions. This approach has
been used to calculate the effective parameters of granular composites corresponding to several
different ordered microgeometries [1]. However, the spectral representation is often useful
even for composites where the microgeometry is not known exactly; in such cases, one must
generally resort to various approximations in order to calculate the relevant spectral functions.
Moreover, the spectral approach is not limited to problems involvinglinear response. For
example, some of the effective macroscopic non-linear response functions can be expressed
in terms of linear response functions of the composite, and certain geometric factors [5].
Recently, this connection has been employed [3], together with certain approximations for
linear composites, to use the spectral representation in calculating these non-linear response
functions.
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The present paper is directed towards the linear and non-linear dielectric response of
polycrystallinematerials. Such materials are not generally thought of as composite media, but
in fact they behave like composites. The reason is that even though each crystallite is made
of the same material, it has a different spatial orientation and hence has different constitutive
properties referred to axes fixed in the laboratory coordinate system. In particular, in this
paper we extend the spectral theory to describe both the linear and non-linear response of a
polycrystalline material.

By a polycrystal, we mean a material with anisotropic transport properties, such that the
crystal symmetry axes vary in direction from point to point in space. Several previous workers
(see, for example, [6]) have described polycrystals as composite materials. In the present work,
we further restrict our discussion to polycrystals of uniaxial materials. In this case, two of the
three principal components of the dielectric tensor are equal, and it is more straightforward
to develop a spectral representation for the effective properties. This restriction to uniaxial
materials still leaves many classes of crystalline materials open to study. In particular, the
theory should satisfactorily describe such classes of materials as the quasi-one-dimensional
organic conductors [6], or the quasi-planar or CuO2-based high-Tc superconductors.

We will use this approach not only to describe the linear properties, but also to calculate
the enhancement of the third-order non-linear susceptibility of a polycrystal. Although this
enhancement has been previously discussed theoretically [4], the treatment presented in that
previous discussion needs to be modified in the case of a complex-valued susceptibility, as has
been pointed out by Maet al [3].

The remainder of this paper is organized as follows. Section 2 describes the extension of
the spectral theory to uniaxial polycrystalline materials. The application of this theory to the
non-linear response of polycrystals is given in section 3, followed by a numerical example in
section 4 and a brief discussion in section 5.

2. Spectral theory for the effective macroscopic linear response of a polycrystal

We consider a polycrystalline dielectric material characterized by a position-dependent uni-
axially symmetric dielectric tensor, which we express in the form

↔
ε(r) = ↔

R−1(r)
↔
εd

↔
R(r) (1)

where

↔
εd =

(
ε1 0 0
0 ε2 0
0 0 ε2

)
(2)

is the dielectric tensor in the frame of the principal axis and
↔
R(r) is a position-dependent

orthogonal matrix characterizing the microstructure of a particular specimen (specifically, it
describes the local orientation of the principal axes with respect to the laboratory axes). If
the sample is macroscopically isotropic, it is reasonable to assume that on a large scale its
dielectric behaviour can be characterized by a scalar dielectric constantεe. εe may be defined
by the relation

D0 ≡ 1

V

∫
D(x) d3x = εeE0 (3)

where

E0 ≡ 1

V

∫
E(x) d3x
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is the space-averaged electric field. We assume thatE0 is real and is directed along thez-axis:
E0 = E0ẑ. In general, the fieldsE andD (as well as the dielectric tensor) are represented as
complex quantities; the physical fields are related to them throughEphys(x) = Re(E(x)e−iωt ),
Dphys(x) = Re(D(x)e−iωt ).

In the quasi-static approximation, the electric field is given by the negative gradient of a
scalar potential. We may express this potential through the relation byE = −E0 ∇φ, where
E0 is real andφ is the solution to the following boundary-value problem:

∇ · (↔ε(x)∇φ) = 0 in V

φ = φ0 ≡ −z onS
(4)

whereS is the boundary surroundingV . Using the boundary conditions forφ and the Maxwell’s
equation∇ · D = 0, we can show that [5]

1

V

∫
D · E dV = 1

V

∫
D · (−E0 ∇φ) dV = 1

V

∫
∇ · [D(−E0φ)] dV

= 1

V

∮
D(−E0φ) · dS = 1

V

∮
D(−E0φ0) · dS

= 1

V

∫
∇ · [D(−E0φ0)] dV = 1

V

∫
D · (E0 ∇z) dV = D0 · E0. (5)

Therefore, the definition (3) is equivalent to

εe = 1

V

∫
E · D

E2
0

dV. (6)

The result (6) is the equation that we use below to expressεe in terms of eigenvalues of a linear
operator.

In order to achieve this reduction, we first note that instead of the position-dependent
tensor

↔
ε we can use

↔
ε

ε2
= ↔

1 − u
↔
R−1↔

C
↔
R (7)

where the parameteru is defined by

u ≡ 1 − ε1

ε2
(8)

and
↔
C is a matrix withC11 = 1 and other components equal to zero. We can use this result to

rewrite the first line of (4) as

∇2φ = u(∇(↔R−1
))1(

↔
R∇)1φ ≡ u ∂iR1i R1j ∂jφ (9)

where we have used(
↔
R−1)ij = (

↔
R)ji , and also employed the convention that repeated indices

are summed over. From equation (9), we see that (4) is equivalent to the integral equation

φ = −z + u0φ. (10)

Here the linear operator0 is defined by its effect on a functionφ through

0φ ≡ −
∫

d3r ′ G(r, r′)(∇′↔R−1(r′))1(
↔
R(r′)∇′φ(r′))1 (11)

andG(r, r′) is a Green’s function for the Laplace operator:

∇2G(r, r′) = −δ3(r − r′) for r in V

G = 0 for r on the boundary.
(12)
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It is now convenient to define a scalar product of two functions by

〈φ|ψ〉 =
∫

dV (∇φ∗ ↔
R−1)1(

↔
R∇ψ)1. (13)

With this definition, we can show that0 is self-adjoint, non-negative, bounded linear operator.
To show the self-adjoint property, we integrate (11) by parts using the boundary conditions for
G to obtain

0φ =
∫

dV ′ (∂ ′
iG(r, r

′))R1i (r
′)R1j (r

′) ∂ ′
jφ(r

′). (14)

Then, using the fact thatG satisfiesG(r, r′) = G(r′, r), we find that

〈φ|0ψ〉 =
∫

dV
∫

dV ′ ∂iφ(r) R1iR1j ∂j (∂
′
kG(r, r

′) R′
1kR

′
1l ∂

′
lψ(r

′))

=
∫

dV
∫

dV ′ R1iR1jR
′
1kR

′
1l ∂j (∂

′
kG(r, r

′)) ∂iφ(r) ∂ ′
lψ(r

′) = 〈0φ|ψ〉. (15)

To prove that0 is real, bounded and non-negative, we consider the eigenvalue problem

0φi(r) = siφi(r) for r in V
φi = 0 for r on the boundary

(16)

wheresi ≡ 1/ui andui is the value ofu at one of the eigenstatesφi (the so-called ‘electrostatic
resonances’). The physical significance of the latter has been discussed elsewhere [1]. Next,
we note that the problem defined by equation (16) is equivalent to the problem

∇ · [(si
↔
1 − ↔

R−1
↔
C

↔
R)∇φi ] = 0

φi = 0 at the boundary.
(17)

as can be seen by comparing the steps going from (4) to (10). But from equation (17), we can
write

0 =
∫

dV φ∗
i ∇ · (si

↔
1 − ↔

R−1↔
C

↔
R)∇φi = −

∫
dV (si |∇φi |2 − |(↔R∇φi)1|2) (18)

from which it follows that 06 si < 1. The limiting casesi = 1 (ε1 = 0) could be realized

only if the tensor
↔
R were position independent. But this would lead toεe ≡ ↔

ε(r), i.e., a tensor,
which contradicts our assumption thatεe is a scalar value. The fact that the eigenvalues of (16)
are limited to the semiclosed segment [0, 1) proves our statement that0 is real, bounded, and
non-negative.

From the properties of0, we conclude that the eigenfunctions|φi〉 of (16) form a complete
orthogonal set with respect to the scalar product (13). Hence, the solution to equation (10) can
be expressed as

|φ〉 = (u0 − 1)−1|z〉 ≡
∑
i

(
s

si − s

) |φi〉〈φi |z〉
〈φi |φi〉 . (19)

We can now use this equation to find an analytical representation forεe.
We begin by using Green’s theorem, the boundary conditions in (4) forφ, and the Maxwell

equation∇ · D = 0 to rewrite equation (6). The result is

εe

ε2
= 1

ε2VE
2
0

∫
(−E0 ∇φ) · D dV = 1

ε2VE0

∮
zD · dS = 1

ε2VE0

∫
ẑ · D dV

= −1

V

∫
ẑ · ((↔1 − u

↔
R−1↔

C
↔
R)∇φ) dV

= 1

V

∮
zẑ · dS +

u

V

∫
(∇z↔

R−1)1(
↔
R∇φ)1 dV = 1 +

u

V
〈z|φ〉. (20)
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If we now introduce a function

F(s) = 1 − εe

ε2
(21)

then on substituting (19) we find

F(s) = − u

V
〈z|φ〉 = 1

V
〈z| 1

s − 0
|z〉 = 1

V

∑
i

|〈z|φi〉|2
〈φi |φi〉

(
1

s − si

)
. (22)

This final result is identical in form to Bergman’s expression for the analogous function in
scalar composite materials. The only difference lies in the definition of the scalar product (13).

3. Application to the third-order non-linear response of polycrystals

As has been suggested by several authors (see, for example, [7]), the non-linear susceptibilities
of composite materials may be hugely enhanced by large fluctuations in the local electric field
in these materials. The basic idea is as follows: since these non-linear susceptibilities depend
on higher powers of the local electric field than does the linear dielectric functionεe, any
enhancement of that field will produce an even larger enhancement in those susceptibilities
than inεe.

A theoretical description of this enhancement has been given by several authors, initially
for isotropic composite materials [5], and more recently for polycrystals [4, 6]. The original
exact expression given in [5] is generally difficult to evaluate without approximations. One
useful approximation involves a decoupling assumption: a certain average of the fourth power
of the electric field, which enters the exact expression, is approximated as a product of averages
of second powers [8]. However, this decoupling approximation (as well as the original exact
expression) must be modified slightly when the material of interest has a complex-valued
dielectric tensor. The need for such a modification was first noted by Maet al, who also
generalize the approach of [5] for the case of components with complex scalar dielectric
functions. In what follows, we further generalize the approach of Maet al [3] to the case of
polycrystals, using the results of section 2.

We consider a polycrystalline material in whichD(x, ω) andE(x, ω) are related by

Di = εijEj + χijklEjEkE
∗
l (23)

where we suppress the frequency and position dependence of all quantities and sum over
repeated indices. Next, we assume that a sufficiently large sample of this polycrystal can be
treated as macroscopically isotropic. Thus, the effective response at the fundamental frequency
ω is given by

D0 = 〈D〉 = εeE0 + χ(E0 · E∗
0)E0 + χ̃(E0 · E0)E

∗
0 (24)

whereE0 is the spatial average of the electric field. In component notation, this may be written
as

D0,i = εeE0,i + χδij δklE
∗
0,jE0,kE0,l + χ̃δij δklE0,jE0,kE

∗
0,l (25)

where〈· · ·〉 denotes a volume average andD0,i andE0,i are theith components ofD0 and
E0. The method of reference [4] does not permit the two effective susceptibilities to be easily
calculated independently, but their sum is readily computed. Generalizing equation (13) of
reference [4] to the case of finite frequencies, we obtain

χe ≡ χ + χ̃ = 〈χijklEiEjEkE∗
l 〉

E4
0

. (26)
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whereEi ≡ Ei(x, ω) denotes the Cartesian component of the local electric field at frequency
ω in the correspondinglinear polycrystal.

In this paper we will assume that the fourth-rank tensorχijkl(x, ω) has certain symmetry
properties which cause many of its components to vanish. Specifically, we will assume that the
only non-vanishing components ofχijkl(x, ω) (in a frame of reference where the coordinate
axes are parallel to the local symmetry axes of the crystallite) are those such that the indices
are equal in pairs. Then equation (26) takes the form

χe = χiijj
〈E2

i |Ej |2〉
E4

0

(27)

whereEi = Ei(x) is the field component parallel to theith principal axis atx (where we
suppress the frequency indexω).

We approximate the right-hand side using the non-linear decoupling approximation (NDA)
[4,8], which is specified by the assumption

〈E2
i |Ej |2〉 ≈ 〈E2

i 〉〈|Ej |2〉. (28)

Then using the expression

εe = 1

VE2
0

3∑
i=1

εi

∫
Ei(x)

2 dV

we immediately get [4]

〈E2
i 〉 = 1

E2
0

(
∂εe

∂εi

)
. (29)

Here the partial derivative denotes∂εe(ε1, ε2, ε3)/∂εi . In the case of a uniaxial material, one
should calculate this derivative first withε2 6= ε3, and only then take the limitε2 = ε3.

The second average on the right-hand side of (28) can be evaluated [3] with the help of
the spectral approach developed in the previous section. From (19) and our definition (13) of
the scalar product, we find

〈|E1|2〉 = E2
0

V
〈φ|φ〉 = E2

0

V

∑
j

∑
i

|s|2
(sj − s∗)(si − s)

〈z|φj 〉〈φi |z〉
〈φj |φj 〉〈φi |φi〉 〈φj |φi〉

= E2
0

V

∑
i

|s|2
|si − s|2

|〈φi |z〉|2
〈φi |φi〉 (30)

where we have used the orthogonality condition〈φi |φj 〉 = δij .
To evaluate〈|E2|2〉, we note that the boundary conditions (4) forφ and forφ∗ are the same,

sinceφ0 is real on the boundary. Therefore, we can useE∗ in place ofE in the transformations
(5), so the definition (6) becomes

εeE
2
0 = 1

V

∫
E∗ · D dV = ε1〈|E1|2〉 + 2ε2〈|E2|2〉 (31)

where we used〈|E2|2〉 = 〈|E3|2〉. Hence,

〈|E2|2〉 = 1

2

(
εe

ε2
− ε1

ε2

〈|E1|2〉
E2

0

)
E2

0 = 1

2

(
1 − F(s)− (1 − 1/s)

〈|E1|2〉
E2

0

)
E2

0

= 1

2

(
1 −

∑
i

(|s|2 − si)

|s − si |2
|〈φi |z〉|2
〈φi |φi〉

)
E2

0. (32)

Given an approximation for the effectivelinear response functionεe, the above formulae allow
us to calculate the enhancement of the non-linear susceptibility.
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The simplest approximation forεe(ε1, ε2, ε3) is the effective-medium approximation
(EMA) [9], which gives

3∑
i=1

εi − εe

εi + 2εe
= 0 (33)

or, for a uniaxial material,
ε1 − εe

ε1 + 2εe
+ 2

ε2 − εe

ε2 + 2εe
= 0. (34)

Then the functionF(s) (equation (21)) is given by

F(s) = 3

4

(
1 −

√
s − 8/9

s

)
. (35)

The corresponding0 operator has a continuous spectrum, so the sums in (22), (30), and (32)
should be replaced by integrals. From

F(s) =
∫ 1

0

µ(x)

s − x
dx (36)

we find that

µ(x) = − 1

π
Im[F(x + i0)] = 3

4π

√
(8/9 − x)

x
θ(x)θ(8/9 − x) (37)

whereθ(x) is the usual step function, i.e.,θ(x) = 1 for x > 0 andθ(x) = 0 for x 6 0. In
order to evaluate the effective non-linear response, this expression should be substituted into
the integrals

〈|E1|2〉 =
∫ 1

0
dx

|s|2µ(x)
|s − x|2 E

2
0 (38)

〈|E2|2〉 = 1

2

(
1 −

∫ 1

0
dx

(|s|2 − x)µ(x)

|s − x|2
)
E2

0. (39)

One immediate consequence of the EMA is that the integral in (39) diverges ass → 0
(i.e., asε1/ε2 → ∞), and, hence,〈|E2|2〉 also diverges in the same limit. This divergence is
related to the divergence of〈E2

2〉 (equation (29)); the physical origin of that latter divergence
was discussed in [4]). Thus, in the NDA/EMA approximation, ifχ2222 6= 0, χe becomes
arbitrarily large whenε1/ε2 → ∞, both at zero and at finite frequencies.

4. Numerical example

To illustrate this discussion, we consider a simple model for a polycrystalline quasi-1D
conductor. In the high-conductivity direction, we assume a Drude metal with dielectric function

ε1(ω) = 1 − ω2
p

ω(ω + i/τ)
. (40)

In the perpendicular directions we assume a constant dielectric function

ε2 = ε3 = 1. (41)

The resulting complex frequency-dependentεe(ω), as given in the EMA, is shown in figure 1.
Figure 2 shows the corresponding NDA prediction (equations (27)–(32)) for the

enhancement of the cubic non-linearity in the same polycrystal, under the assumption that
εe (andF(s)) are given by the EMA. For comparison, we show in figure 3 the results of an
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Figure 1. Re(εe) (bold line) and 100 Re(σe) (light line), as given by the EMA for a polycrystalline
sample of a quasi-1D conductor. The single-crystal dielectric tensor is assumed to have principal
values given by equations (40) and (41) withωpτ = 10. σe is defined byσe ≡ (iω/4π)εe.

Figure 2. (a) Real and imaginary parts ofχe/χ1111 (bold and light curves) for a polycrystalline
material, calculated under the assumption that the only non-zero component of the single-crystal
non-linear susceptibility tensor isχ1111 (axis 1 parallel to the high-conductivity axis). The calc-
ulations are based on EMA results for the linear response (see figure 1), and on the model single-
crystal dielectric tensor assumed in that figure. (b) As (a) except thatχe/χ1122 is plotted, assuming
that onlyχ1122 is non-zero. (The same plot will describe the enhancement ofχ1212 andχ2112, as
follows from the definition (23).) (c) As (a) except thatχe/χ2211 is plotted, assuming that only
χ2211 is non-zero. (The same plot will describe the enhancement ofχ1221 andχ2121.) (d) As (a)
except thatχe/χ2222 is plotted, assuming that onlyχ2222 is non-zero.

earlier and less accurate approximation [4]. The results in figure 3 are obtained by using|〈E2
i 〉|

instead of〈|Ei |2〉, and evaluating〈E2
i 〉 using equation (29).

Quantitatively, on the basis of our simple example, the effects of the correction noted
by [3] appear to be relatively minor if only the diagonal elementsχiiii 6= 0, but are more
substantial ifχ1122 6= 0 or χ2211 6= 0. Nonetheless, the corrections do introduce a non-zero
correction to all the elements of the tensorχ . The numerical correction can be seen always
to increase the absolute value of the corresponding matrix element ofχ . This trend can be
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Figure 2. (Continued)

qualitatively understood as follows: the spatial average〈E2
i 〉 which enters into the uncorrected

matrix elements can, in principle, even vanish under some conditions, but the absolute value
〈|Ei |2〉 can never vanish.
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Figure 3. As figure 2, except that instead of the more accurate formulae used in that figure we use
the expressions given in reference [4]. Plots (a)–(d) correspond to the plots (a)–(d) of figure 2.

5. Discussion

Next, we briefly discuss the limitations of the present approach, and the validity of the approx-
imations made. At various points in this paper, we have made the following approximations:

• the quasi-static approximation;
• the non-linear decoupling approximation; and
• the effective-medium approximation.

We now discuss the limitations of each of these approximations.
Thequasi-static approximationis embodied in equation (4), which implies that the electric

field can be expressed as the negative gradient of a scalar potential. This assumption is still
valid at finite frequencies, provided that the material of interest lies in thelong-wavelength
limit (see, for example, reference [2]). A polycrystalline material is likely to fall in this long-
wavelength regime, provided that the typical size of a crystallite is small compared to the wave-
length of the electromagnetic radiation in the medium. At optical frequencies, this condition
requires crystallites of linear dimensions of only a few hundred Å, but the same approximation
might hold at microwave frequencies even for micron-size crystallites. More generally, any
structural correlations in the polycrystal should exist only a scale which is small compared to
the wavelength; otherwise, there is likely to be significant scattering of the electromagnetic
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Figure 3. (Continued)

radiation and the quasi-static approximation will break down. Our derivation of the spectral
representation for a polycrystal is based on the quasi-static approximation. Furthermore, our
definition of an effective linear dielectric functionεe (equation (3)) presupposes the quasi-static
approximation. Indeed, if the quasi-static approximation does not hold, the composite cannot
easily be described in terms of an effective dielectric function.

Thenon-linear decoupling approximation(NDA) is a way of approximately calculating
the fourth moment of the electric field in the polycrystal, by breaking this up into a product
of two second-moment terms. The NDA is known to be quite inaccurate near percolation
thresholds in conventional composite materials and most probably also for polycrystalline
materials [10, 11]. The reason for the inaccuracy is that the NDA neglects local fluctuations
in electric fields which become very important near a percolation threshold. However, if one
does not make the NDA, than there is no easy way to express this non-linear susceptibility in
terms of the spectral function which describes thelinear properties of the polycrystal.

Equations (27)–(30) and (32), which are based on our use of the quasi-static approximation
and NDA, are equally valid for any microgeometry of a polycrystal and can be used with any
desired approximation for the second moments. On the other hand, the spectral function
F(s), corresponding to the actual distribution of the electric field, may be sensitive to the
particular arrangement of the crystallites. We use theeffective-medium approximation(EMA)
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to calculate the spectral function which characterizes the linear dielectric functionεe. Although
the EMA does predict the occurrence of a percolation threshold in a polycrystalline material, the
approximation is likely to be quite inaccurate near that threshold, since it treats each crystallite
as being embedded in an effective environment. Note that the spectral representation itself is
more general than the EMA, since it is always applicable in the quasi-static approximation.
Hence, the spectral representation can be used in conjunction with other, more accurate methods
of calculating the linear responseεe, which take better account of the local environment of a
given crystallite, if such methods can be found.

We emphasize again that neither the NDA nor the EMA are necessary approximations;
if better approximations for the fourth moment and for the linear response are available, then
these can be used to compute the cubic non-linear susceptibility of a polycrystalline material.
The inaccuracy of the NDA and the EMA is partially compensated for by the simplicity of
these approximations, which allow many properties to be computed nearly in closed, analytic
form.

To summarize, in this paper, we have extended the spectral representation of Bergman
so that it applies to the linear effective dielectric function of a uniaxial polycrystal. The
extension is straightforward, but should be useful for a wide variety of materials. As an
illustration, we give the spectral function for a polycrystal in whichεe is given in the effective-
medium approximation. Finally, we use this spectral function to calculate the cubic non-linear
susceptibility tensorχe for a uniaxial polycrystal in the non-linear decoupling approximation
(NDA), once again calculating the required electric field averages within the EMA. As for
two-component composites of isotropic materials, the expressions forχe are slightly altered
from previous results when one properly accounts for the fact [3] that the averages〈E2〉 and
〈|E|2〉 are unequal. We also give a brief discussion of the conditions under which these various
expressions and approximations are applicable to real polycrystalline materials.
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